Skip to main content
Version: 2.2

Device Carveouts

The table below shows the number of device carveout percentage rates. "Device carveouts" are rates with revenue code that are one of ('0275', '0276', '0277', '0278').

Data Dictionary:

  • payer MRF: number of providers from payer MRFs
  • hospital MRF: number of providers from hospital MRFs
  • num_providers: number of providers either source
  • num_providers_with_both: number of providers with both payer and hospital MRF rates
  • num_validated: number of providers with validated rates
  • pct_validated: percentage of providers with validated rates

As an example: 1181 providers have rates from both payer and hospital MRFs for Aetna, and 876 of those have validated rates.

"Validated" means that the percentage rate is within 10% of each other.

payer_mrfhospital_mrfnum_providersnum_providers_with_bothnum_validatedpct_validated
('7', 'Aetna')36701780426911818760.741744
('76', 'Cigna')2885172839846124490.73366
('522', 'Kaiser Permanente')33931523404140350.25
('643', 'United Healthcare')1005187325423352020.602985
('42', 'Anthem')152256519071531090.712418
('49', 'Blue Cross Blue Shield of Michigan')222322411360.461538
('169', 'Blue Cross Blue Shield of Texas')023923900nan
('50', 'Blue Cross Blue Shield of Minnesota')2216622760420.7
('390', 'Blue Cross Blue Shield of Kansas')1973621023170.73913
('461', 'Wellmark Blue Cross Blue Shield')1965220811111
('61', 'Regence Blue Cross Blue Shield')173017300nan
('799', 'Quartz')1643616931300.967742
('403', 'Blue Shield of California')89791511780.470588
('229', 'Blue Cross Blue Shield of New Jersey (Horizon)')9864150650.833333
('388', 'Blue Cross Blue Shield of Florida (Florida Blue)')013213200nan
('398', 'Blue Cross Blue Shield of Tennessee')816612522150.681818
('389', 'Blue Cross Blue Shield of Illinois')010210200nan
('391', 'Blue Cross Blue Shield of Louisiana')78391011680.5
('300', 'Providence Health Plan')83218816161
('52', 'Blue Cross Blue Shield of North Carolina')40617526220.846154
('354', 'UPMC Health Plan')0646400nan
('770', 'Mass General Brigham Health Plan')6206200nan
('455', 'Blue Cross Blue Shield of Hawaii')5705700nan
('628', 'Premera Blue Cross')23355400nan
('299', 'Priority Health')74950620.333333
('286', 'MVP Health Care')0505000nan
('720', 'Harvard Pilgrim')0505000nan
('111', 'Geisinger')2484900nan
('101', 'Blue Cross Blue Shield of New York (Excellus)')26174300nan
('174', 'Highmark Blue Cross Blue Shield')0424200nan
('458', 'Blue Cross Blue Shield of North Dakota')37739520.4
('51', 'Blue Cross Blue Shield of Nebraska')0383800nan
('462', 'Blue Cross Blue Shield of Vermont')32833771
('317', 'Tufts Health Plan')0333300nan
('636', 'SelectHealth')0292900nan
('168', 'Blue Cross Blue Shield of South Carolina')191628740.571429
('383', 'Blue Cross of Idaho')52326221
('392', 'Blue Cross Blue Shield of Massachusetts')0202000nan
('456', 'Blue Cross Blue Shield of Mississippi')14619111
('454', 'Blue Cross Blue Shield of Arkansas')0151500nan
('166', 'Blue Cross Blue Shield of New Mexico')0131300nan
('165', 'Blue Cross Blue Shield of Montana')0111100nan
('56', 'Blue Cross Blue Shield of Pennsylvania (Independence)')0101000nan
('44', 'Blue Cross Blue Shield of Maryland & DC (CareFirst)')08800nan
('53', 'Blue Cross Blue Shield of Oklahoma')07700nan
('43', 'Blue Cross Blue Shield of Arizona')07700nan
('723', 'Fidelis')05500nan
('160', 'Blue Cross Blue Shield of Alabama')05500nan
('397', 'Blue Cross Blue Shield of Rhode Island')03300nan
('54', 'Capital Blue Cross')01100nan
Code

Payer Device Rates SQL​

WITH
network_spine AS (
SELECT
payer_id,
network_id,
network_name,
t.payer_data_network
FROM
tq_dev.internal_dev_csong_cld_v2_0_0.tmp_ref_network_spine_2025_05,
UNNEST(payer_data_network) AS t(payer_data_network)
),
payer_spine AS (
SELECT DISTINCT
payer_id,
payer_name
FROM tq_dev.internal_dev_csong_cld_v2_0_0.tmp_ref_payer_spine_2025_05
),
provider_spine AS (
SELECT
npi_value AS npi,
provider_id
FROM
tq_dev.internal_dev_csong_cld_v2_0_0.tmp_ref_provider_spine_2025_05,
UNNEST(npi) AS t(npi_value)
WHERE
provider_id IS NOT NULL
),
core_rates AS (
SELECT
cr.payer_id,
ps.payer_name,
ns.network_id,
ns.network_name,
ps.provider_id,
CASE
WHEN negotiated_rate < 1 THEN negotiated_rate * 100
WHEN negotiated_rate > 100 THEN NULL
ELSE negotiated_rate
END AS percentage
FROM tq_production.public_2025_05.core_rates cr
JOIN network_spine ns
ON ns.payer_id = cr.payer_id
AND ns.payer_data_network = cr.product_network_label
JOIN payer_spine ps
ON ps.payer_id = cr.payer_id
JOIN provider_spine ps
ON ps.npi = cr.provider_npi
WHERE billing_code_type = 'RC'
AND billing_code IN (
'0275',
'0276',
'0277',
'0278'
)
AND billing_class = 'institutional'
AND negotiated_type = 'percentage'
),
mode_rates AS (
SELECT
payer_id,
network_id,
provider_id,
percentage,
ROW_NUMBER() OVER (
PARTITION BY payer_id, network_id, provider_id
ORDER BY COUNT DESC
) AS rn
FROM (
SELECT
payer_id,
network_id,
provider_id,
percentage,
COUNT(*) as count
FROM core_rates
GROUP BY 1, 2, 3, 4
)
)
SELECT
cr.payer_id,
cr.payer_name,
cr.network_id,
cr.network_name,
cr.provider_id,
min(cr.percentage) as min_rate,
max(cr.percentage) as max_rate,
avg(cr.percentage) as avg_rate,
approx_percentile(cr.percentage, 0.5) as median_rate,
ANY_VALUE(mr.percentage) as mode_rate,
count(*) as num_rates
FROM core_rates cr
LEFT JOIN (SELECT * FROM mode_rates WHERE rn = 1) mr
ON mr.payer_id = cr.payer_id
AND mr.network_id = cr.network_id
AND mr.provider_id = cr.provider_id
GROUP BY 1, 2, 3, 4, 5

Provider Device Rates SQL​

WITH
network_spine AS (
SELECT
payer_id,
network_id,
network_name,
t.payer_data_network
FROM
tq_dev.internal_dev_csong_cld_v2_0_0.tmp_ref_network_spine_2025_05,
UNNEST(payer_data_network) AS t(payer_data_network)
),
payer_spine AS (
SELECT
payer_id,
payer_name
FROM tq_dev.internal_dev_csong_cld_v2_0_0.tmp_ref_payer_spine_2025_05
),
provider_spine AS (
SELECT
npi_value AS npi,
provider_id
FROM
tq_dev.internal_dev_csong_cld_v2_0_0.tmp_ref_provider_spine_2025_05,
UNNEST(npi) AS t(npi_value)
WHERE
provider_id IS NOT NULL
),
hospital_rates AS (
SELECT
hr.payer_id,
ps.payer_name,
ns.network_id,
ns.network_name,
hr.provider_id,
CASE
WHEN negotiated_percentage < 1 THEN negotiated_percentage * 100
WHEN negotiated_percentage > 100 THEN NULL
ELSE negotiated_percentage
END AS percentage
FROM glue.hospital_data.hospital_rates hr
JOIN (
SELECT
DISTINCT
payer_id,
network_name,
t.plan_name
FROM tq_dev.internal_dev_csong_cld_v2_0_0.tmp_ref_plan_bridge_analysis_2025_05,
UNNEST(unique_plans) AS t(plan_name)
) pb
ON pb.payer_id = CAST(hr.payer_id AS VARCHAR)
AND pb.plan_name = hr.plan_name
JOIN network_spine ns
ON ns.payer_id = pb.payer_id
AND ns.network_name = pb.network_name
JOIN payer_spine ps
ON ps.payer_id = pb.payer_id
WHERE
LPAD(hr.revenue_code, 4, '0') IN (
'0275',
'0276',
'0277',
'0278'
)
AND hr.negotiated_percentage IS NOT NULL
AND contract_methodology = 'percent of total billed charges'
AND COALESCE(billing_class, '') != 'Professional'
AND payer_class_name = 'Commercial'
),
mode_rates AS (
SELECT
payer_id,
network_id,
provider_id,
percentage,
ROW_NUMBER() OVER (
PARTITION BY payer_id, network_id, provider_id
ORDER BY COUNT DESC
) AS rn
FROM (
SELECT
CAST(payer_id AS VARCHAR) as payer_id,
network_id,
provider_id,
percentage,
COUNT(*) as count
FROM hospital_rates
GROUP BY 1, 2, 3, 4
)
)
SELECT
CAST(hr.payer_id AS VARCHAR) AS payer_id,
hr.payer_name,
hr.network_id,
hr.network_name,
hr.provider_id,
min(hr.percentage) as min_rate,
max(hr.percentage) as max_rate,
avg(hr.percentage) as avg_rate,
approx_percentile(hr.percentage, 0.5) as median_rate,
ANY_VALUE(mr.percentage) as mode_rate,
count(*) as num_rates
FROM hospital_rates hr
LEFT JOIN (SELECT * FROM mode_rates WHERE rn = 1) mr
ON mr.payer_id = CAST(hr.payer_id AS VARCHAR)
AND mr.network_id = hr.network_id
AND mr.provider_id = hr.provider_id
GROUP BY 1, 2, 3,4, 5

Analysis​

df = (
df_payer
.merge(
df_provider,
on=['payer_id', 'payer_name', 'network_id', 'provider_id'],
how='outer',
suffixes=('_payer', '_provider')
)
)
df

df['validated'] = (df['mode_rate_payer'] - df['mode_rate_provider']).abs() < 5
df['both_rates_present'] = df['mode_rate_payer'].notnull() & df['mode_rate_provider'].notnull()
df['payer_mrf'] = df['mode_rate_payer'].notnull()
df['hospital_mrf'] = df['mode_rate_provider'].notnull()
df_check = (
df
.loc[df['mode_rate_payer'].notnull() | df['mode_rate_provider'].notnull()]
.groupby(['payer_id', 'payer_name'])
.agg(
payer_mrf=('payer_mrf', lambda x: df.loc[x.index[x], 'provider_id'][x].nunique()),
hospital_mrf=('hospital_mrf', lambda x: df.loc[x.index[x], 'provider_id'][x].nunique()),
num_unq_providers=('provider_id', pd.Series.nunique),
num_providers_with_both=('both_rates_present', lambda x: df.loc[x.index[x], 'provider_id'][x].nunique()),
num_unq_providers_validated=('validated', lambda x: df.loc[x.index[x], 'provider_id'].nunique())
)
)
df_check = df_check.rename(columns={
'num_unq_providers_validated': 'num_validated',
'num_unq_providers': 'num_providers'
})
df_check['pct_validated'] = df_check['num_validated'] / df_check['num_providers_with_both']
df_check = df_check.sort_values('num_providers', ascending=False)
print(df_check.to_markdown())

More Details:​

Density plot across all payers:

alt text

Distributions by payer:

alt text