from IPython import get_ipython
from jinja2 import Template
if get_ipython() is not None:
get_ipython().run_line_magic("load_ext", "autoreload")
get_ipython().run_line_magic("autoreload", "2")
from dotenv import load_dotenv
import pandas as pd
from tqds.sql import db, sql
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_theme(style='whitegrid', rc={'figure.figsize': (14, 12)})
pd.options.display.max_columns = None
pd.options.display.max_rows = 100
pd.options.display.max_colwidth = None
pd.set_option('display.float_format', lambda x: '%.3f' % x)
trino_conn = db.TrinoClient().conn
redshift_conn = db.RedshiftClient().conn
query = sql.Query()
"""
Table of Contents:
- [CLD-v2.2.0] blue payer indicator
- [CLD-v2.2.0] always enforce 10x upper bound for IP accuracy scores (even hospital-reported GC transformations)
- [CLD-v2.2.0] spines physician groups integration
- [CLD-v2.2.0] lab code fixes
- [CLD-v2.2.0] update abridged schema
- [CLD-v2.2.0] Add Raw and Transformations Logic for New Dosage Fields
- [CLD-v2.2.0] tighten bounds validation drug scores
Misc:
- [CLD-v2.2.0] payer chunk optimizations
- [CLD-v2.2.0] roid conflict fix (bigint -> varchar + 256-bit hex)
- [CLD-v2.2.0] combined main traceability efficiency improvements
- [CLD-v2.2.0] lookback run filters
- [CLD-v2.2.0] lab code indicator; fix payer rates pull for labs
"""
"""
- [CLD-v2.2.0] blue payer indicator
"""
blues = pd.read_sql(f"""
SELECT DISTINCT payer_id, payer_name, blue_payer
FROM tq_dev.internal_dev_csong_cld_v2_2_0.prod_combined_abridged
WHERE canonical_rate IS NOT NULL
LIMIT 100
""", con=trino_conn)
"""
- [CLD-v2.2.0] always enforce 10x upper bound for IP accuracy scores (even hospital-reported GC transformations)
"""
pd.read_sql(f"""
SELECT
canonical_rate_score,
min(canonical_rate_percent_of_cbsa_avg_medicare),
max(canonical_rate_percent_of_cbsa_avg_medicare),
count(*)
FROM tq_dev.internal_dev_csong_cld_v2_2_0.prod_combined_abridged
WHERE bill_type = 'Inpatient'
AND canonical_rate_score > 1
GROUP BY 1
""", con=trino_conn)
"""
- [CLD-v2.2.0] lab code fixes
"""
pd.read_sql(f"""
SELECT provider_type, count(distinct billing_code) as n_codes
FROM tq_dev.internal_dev_csong_cld_v2_2_0.prod_combined_abridged
WHERE billing_code in (
SELECT billing_code
FROM tq_dev.internal_dev_sjones.lab_template_codes_09_30_2026
)
AND canonical_rate_score > 1
GROUP BY 1
""", con=trino_conn)
"""
- [CLD-v2.2.0] update abridged schema [reverted]
CHECK THAT REVERSION IS CORRECT
"""
new = pd.read_sql(f"""
DESCRIBE tq_dev.internal_dev_csong_cld_v2_2_0.prod_combined_abridged
""", con=trino_conn)
old = pd.read_sql(f"""
DESCRIBE tq_dev.internal_dev_csong_cld_v2_1_4.prod_combined_abridged
""", con=trino_conn)
new.loc[new['Column'].isin(old['Column'])]
old.loc[~old['Column'].isin(new['Column'])]
"""
- [CLD-v2.2.0] Add Raw and Transformations Logic for New Dosage Fields
"""
"""
- [CLD-v2.2.0] tighten bounds validation drug scores
"""
pd.read_sql(f"""
select
roid,
payer_id,
payer_network_name,
canonical_rate,
canonical_rate_source,
canonical_rate_type,
canonical_contract_methodology,
canonical_rate_score,
best_payer_rate,
best_payer_rate_score,
best_hospital_rate,
best_hospital_rate_score
from tq_dev.internal_dev_csong_cld_v2_2_0.prod_combined_abridged
where billing_code = 'J9271'
and provider_name = 'Stanford Hospital - 300 Pasteur Dr'
and payer_name = 'Anthem'
""", con=trino_conn)